Constructing discrete Morse functions
نویسندگان
چکیده
Morse theory has been considered a powerful tool in its applications to computational topology, computer graphics and geometric modeling. It was originally formulated for smooth manifolds. Recently, Robin Forman formulated a version of this theory for discrete structures such as cell complexes. It opens up several categories of interesting objects (particularly meshes) to applications of Morse theory. Once a Morse function has been defined on a manifold, then information about its topology can be deduced from its critical elements. The purpose of this work is to design an algorithm to define optimal discrete Morse functions on general cell complex, where optimality entails having the least number of critical elements. This problem is proven here to be MAX–SNP hard. However, we provide a linear algorithm that, for the case of 2–manifolds, always reaches optimality. Moreover, we proved various results on the structure of a discrete Morse function. In particular, we provide an equivalent representation by hyperforests. From this point of view, we designed a construction of discrete Morse functions for general cell complexes of arbitrary finite dimension. The resulting algorithm is quadratic in time and, although not guaranteed to be optimal, gives optimal answers in most of the practical cases.
منابع مشابه
Perfect discrete Morse functions on 2-complexes
A bst r ac t This paper is focused on the study of perfect discrete Morse functions on a 2-simplicial complex. These are those discrete Morse functions such that the number of critical i-simplices coincides with the i-th Betti number of the complex. In particular, we establish conditions under which a 2-complex admits a perfect discrete Morse function and conversely, we get topological properti...
متن کاملDiscrete Stratified Morse Theory: A User's Guide
Inspired by the works of Forman on discrete Morse theory, which is a combinatorial adaptation to cell complexes of classical Morse theory on manifolds, we introduce a discrete analogue of the stratified Morse theory of Goresky and MacPherson [17]. We describe the basics of this theory and prove fundamental theorems relating the topology of a general simplicial complex with the critical simplice...
متن کاملDiscrete Morse Inequalities on Infinite Graphs
The goal of this paper is to extend to infinite graphs the knownMorse inequalities for discrete Morse functions proved by R. Forman in the finite case. In order to get this result we shall use a special kind of infinite subgraphs on which a discrete Morse function is monotonous, namely, decreasing rays. In addition, we shall use this result to characterize infinite graphs by the number of criti...
متن کاملHierarchical Morse - Smale Complexes for Piecewise Linear 2-Manifolds
We present algorithms for constructing a hierarchy of increasingly coarse Morse-Smale complexes that decompose a piecewise linear 2-manifold. While these complexes are defined only in the smooth category, we extend the construction to the piecewise linear category by ensuring structural integrity and simulating differentiability. We then simplify Morse-Smale complexes by canceling pairs of crit...
متن کاملPolyhedral representation of discrete Morse functions
It is proved that every discrete Morse function in the sense of Forman on a finite regular CW complex can be represented by a polyhedral Morse function in the sense of Banchoff on an appropriate embedding in Euclidean space of the barycentric subdivision of the CW complex; such a representation preserves critical points. The proof is stated in terms of discrete Morse functions on posets.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002